Minimum Error Rate Training in Statistical Machine Translation

نویسنده

  • Franz Josef Och
چکیده

Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training criteria which directly optimize translation quality. These training criteria make use of recently proposed automatic evaluation metrics. We describe a new algorithm for efficient training an unsmoothed error count. We show that significantly better results can often be obtained if the final evaluation criterion is taken directly into account as part of the training procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Restarts in Minimum Error Rate Training for Statistical Machine Translation

Och’s (2003) minimum error rate training (MERT) procedure is the most commonly used method for training feature weights in statistical machine translation (SMT) models. The use of multiple randomized starting points in MERT is a well-established practice, although there seems to be no published systematic study of its benefits. We compare several ways of performing random restarts with MERT. We...

متن کامل

Lattice-based Minimum Error Rate Training for Statistical Machine Translation

Minimum Error Rate Training (MERT) is an effective means to estimate the feature function weights of a linear model such that an automated evaluation criterion for measuring system performance can directly be optimized in training. To accomplish this, the training procedure determines for each feature function its exact error surface on a given set of candidate translations. The feature functio...

متن کامل

A Systematic Comparison of Training Criteria for Statistical Machine Translation

We address the problem of training the free parameters of a statistical machine translation system. We show significant improvements over a state-of-the-art minimum error rate training baseline on a large ChineseEnglish translation task. We present novel training criteria based on maximum likelihood estimation and expected loss computation. Additionally, we compare the maximum a-posteriori deci...

متن کامل

Stabilizing Minimum Error Rate Training

The most commonly used method for training feature weights in statistical machine translation (SMT) systems is Och’s minimum error rate training (MERT) procedure. A well-known problemwith Och’s procedure is that it tends to be sensitive to small changes in the system, particularly when the number of features is large. In this paper, we quantify the stability of Och’s procedure by supplying diff...

متن کامل

Minimum Error Rate Training Semiring

Modern Statistical Machine Translation (SMT) systems make their decisions based on multiple information sources, which assess various aspects of the match between a source sentence and its possible translation(s). Tuning a SMT system consists in finding the right balance between these sources so as to produce the best possible output, and is usually achieved through Minimum Error Rate Training ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003